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Note

Nonlinear-Multiple-Function Simultaneous
Least Squares Fitting Procedure

INTRODUCTION

Sometimes physicists working in experimental Physics are faced with the analysis
of data coming from different sources, whose interpretation may follow from quite
different physical origins, but with the interesting (and desirable) situation that one
or more of the physical parameters used in the analysis are common to various of
the experiments. In the present work the analysis is restricted to data coming from
two different and independent sources, although the procedure may easily be
extended to more general cases.

The standard procedure to analyse two sets of data obtained from two different
experiments on the same physical system is to analyse each of them separately and
then to compare the similarities or the discrepancies between both sets of results.
On physical grounds the common parameters must have the same value and in this
work a procedure is outlined as to how this aim may be accomplished by
combiring both sets of data in a simultaneous treatment. OQur motivation was to use
all possible physical constraints to determine the common parameters.

In the next section the basic theory is outlined, and in the last section an example
is given.

THEORY

The general treatment of nonlinear least-squares fit to a given functional form
developed by Deming [1] will be used as the basis for the present procedure. Let us
consider two sets of data described by

..'=f(x’P1aP2) (la)
o= (x# P27P3)’ (lb)

where x is the independent variable and P,, P,, P, are the parameters to be
determined, and where P, is common to both descriptions. The data are provided
in the form

X, Y, W,, 1<i<N, (2a)

Xj: Zja sz’ 1<.}<M7 (Zb)
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where Y, and Z, are measured values of the properties y and - when the indepen-
dent variable takes values X; and X;; while W', and W are weights assigned to the
corresponding data points (X, Y,) and (X;, Z)), respectlvely,

In general, it is expected that,

yi=fX, P, P.)#Y, I <IN, {3a)
5 =g(X,, P, P)#Z;, 1<j<M, {3b)

and therefore P,, P,, and P, are determined to minimize S, the weighted sum of
the squares of the deviations,

A

N
=3 WY =y )+ Y, WoAZ, =2, (4)
i=1 1=1

In order to proceed it is necessary to linearize Egs. {3a) and {3b) in their depen-
dences on the parameters to be determined, and this is accomplished by means of a
Taylor power series expansion of the function given by Egs. (1a) and (1b), on the
parameters about the initial values Pg,, Pg., and Pg;. If we define C,. C,, and C,
by

C,=P,— Py (5a)
C,=P,— Py, {56}
Cy=P;— Py, {5¢}

the Gauss normal system of the equations resulis,

(LD C+(1,2)Co+ (1,3} Cy=(1,0j {6a)
(1,2)C;+(2,2)C,+(2,3) C,=(2.0) {6b)
(1,3) C +(2,3) Cy +(3,3) Cs= (3, 0). (6¢)
where
N M
(iaj.): Z I'V.;-kfzi .§j+ Z W.. gZ,- g;j (7a;
k=1 n=1
M
(1, 0)= Z Wl Y=y + 2 W, gilZ,—2,) (7b)
k=1 =1
with
x =3£ {8a)
e OP[|P1:P10,Pg:ng_Y:X;\
0g
= — . {8b}
gP 5Pl Par= Py, P1= P35, x =X,
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The solution of Eqs. (6a)-(6c) gives the corrections to the initial values of the
parameters, and from Egs. (5a)—(5¢c) we obtain

P11=P01+C1 (93.)
P,=Pyp+C(, (9b)
Pi3="Py+ C;. (9c¢)

These values for the parameters are used in turn as initial values and a new
iteration is performed to correct the values P,,, P,,, and P,; for the parameters
given by Egs. (9a)—(9c). The procedure is iterated until convergence is achieved to
the desired degree of approximation, which may be expressed in the form that
changes in the parameters and/or in S between two successive iterations that are
below a certain arbitrary value.

Once the convergence has been obtained, the values for the parameters providing
the best simultaneous fit to Eqgs. (1a) and (1b) in the least-squares sense have been
determined.

It has been shown by Deming [2] that an estimate of the standard deviation in
the /th parameter being fitted is given by

S 1/2
= | ————— ‘4fl s ].0
P |:N+ M-n " ] (10)

where # is the number of parameters being fitted (3 in the present case), and 4!
indicates the element (i, i) of the inverse matrix to that of the system of
Egs. (6a)-(6c).

The experimental uncertainties in both dependent variables and in the indepen-
dent variable are taken into account through the effective weights [1, 3, 4],

W, =[4y)* +(f4x)’ 17", I<i<D, (11a)

W.y=[(4z)*+(gidx,)* 1", 1<j<M, (11b)

zl

where (4x,, Ay;) are the experimental uncertainties affecting the data point (X;, ¥;)
(similarly for (Ax;, 4z;)), and

)
f'x=~—j , I<i<N, (12a)
0xX Py=Pyy, P2= Py, x=X,
d
gl=-= <iSM (12b)
0x Py= Py, Py= Po3, x=X;
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EXAMPLE
An example, in which the parameters to be fitted are involved in a strong

nonlinear form in Eqs. (1a)-(1b), is that provided by

Avp(T)=vo(0)—vo(T) =

3T4 J"TD'T Xl
o}

- dx
T (e —1)

500

15a3
T el kT =1 toa
ORT? ;ToiT  x%e™
(= 5 dx
D=7, T=m®
3R(hvg/kT)? exp(hvg/kT) (13b)

Lexp(hve/kT)— 177

where T is the temperature; /4, k, and R are Planck’s, Boltzmann’s, and the gas
constants, respectively. The parameters to be determined are Tp and vg, which
are the Debye temperature and the Einstein frequency, respectively, characteristics
of the crystalline solid under investigation. Equation (13a) describes a typical
temperature dependence of the NQR (nuclear quadrupole resonance) transition
frequency measured in kHz [5, 6]; while Eq. (13b) describes a typical specific heat
expression for six normal modes: 3 acoustics and 3 optic [7].

The data to be fitted was generated by means of Egs. (13a)-(13b), using
Tr=100K and vg=100cm !, and the value were dispersed in a Gaussian-
random way with standard deviations of 2 kHz and 2% for 4v,(T) and C(T},
respectively. Table I shows one particular set of data and the values produced with
the obtained parameters: T, = (98.233 +0.0057) K and v = (100,18 £ 0.12) cm .

It is interesting to mention that in the case in which the dependence ol
Egs. (la)~(1b) on the parameters is a linear one, the first iteration produces the
final values. On the other hand, if the parameters are involved in a nonlinear form.
several iterations are needed before convergence is achieved. Table II shows the
values for the parameters, obtained in the example, after each iteration, starting
from different initial guessed values.

The program is written in Basic for the Commodore PET 2001 computer, and a
listing is available upon request.
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TABLE I

Data Used and Values Determined for the NQR Frequency and the Specific Heat

r 4 VQe.xp 4 vQca\l-: Cc\p Ccalt
(K) (kHz) (kHz) (J/mol K) (J/mol K)
5 0.2418 0.2562
10 0.60 0.20
15 5.6877 5.6781
20 4.30 281
25 15.1800 15.4268
30 13.70 11.65
35 234448 24.4483
40 26.10 28.43
45 31.3605 31.1789
50 53.50 52.04
55 34.9928 358719
60 79.00 80.71
65 377319 39.1282
70 111.30 113.00
75 40.7179 414272
80 145.60 147.89
85 43.9971 43.0894
90 186.90 184.68
95 45,7958 44.3206
100 224.50 222.88
105 44.7777 45.2534
110 263.90 262.17
115 44.6634 45.9748
120 299.60 302.29
125 47.5434 46.5428
130 347.30 343.07
135 47.7316 46.9973
140 384.20 384.37
145 46.3083 47.3662
150 428.60 426.11
155 46.3255 47.6695
160 471.40 468.20
165 47.7183 479217
170 513.20 510.59
175 47.3500 48.1336
180 549.70 553.22
185 48.7830 48.3132
190 594.40 596.07
195 48.2661 48.4667
200 636.90 639.09
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TABLE 1

Values for Tp, v, and S Obtained at Each Iteration for Different Initial Values.

[

To VE
{teration (K) {em "} S
0 + 100.0000 + 100.0000 170.980
1 + 98.1990 +100.1820 35.492
2 + 98.2326 +100.1802 39.442
\ + 200.0000 + 30.0000 700864.226
t —265.4045 + 77.5762 417452.502
2 + 943701 + 864021 21390.004
3 + 97.3702 + 98.2079 404.167
4 + 98.2131 +100.1394 39.596
+ 98.2327 -+-100.1802 39.442
0 + 50.0000 +150.0000 329326 789
1 + 824187 + 736757 135841.401
2 + 92.9680 + 930386 6715.532
3 + 97.7857 + 99.6598 73.119
4 + 98.2293 +100.1775 39.443
5 + 98.2327 +100.1802 19.442
0 + 50.0000 + 50.0000 §1453485.5%0
1 + 756493 + 75.1321 149833.034
2 + 91.5736 + 93.88i3 6686.251
3 + 97.6540 + 99.7895 70473
4 + 98.2279 +10C.1789 39.443
3 + 98.2327 +100.1802 39.442
0 +150.0000 + 150.0000 135509.266
t + 474357 + 779977 444805.004
2 + 79.9207 + 96.6547 25228 109
3 + 951202 +100.2570 503.244
4 + 98.1241 +100.1879 39.562
5 + 98.2324 +100.1803 39.442
6 + 98.2327 +100.1802 39.442
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